Validation of SCIAMACHY top-of-atmosphere reflectance for aerosol remote sensing using MERIS L1 data

نویسندگان

  • W. von Hoyningen-Huene
  • A. A. Kokhanovsky
  • M. W. Wuttke
  • M. Buchwitz
  • S. Noël
  • K. Gerilowski
  • J. P. Burrows
  • B. Latter
  • R. Siddans
  • B. J. Kerridge
چکیده

Aerosol remote sensing is very much dependent on the accurate knowledge of the top-of-atmosphere (TOA) reflectance measured by a particular instrument. The status of the calibration of such an instrument is reflected in the quality of the aerosol retrieval. Current data of the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) instrument (operated with the data processor version 5 and earlier) give too small values of the TOA reflectance, compared e.g. to data from MERIS (Medium Resolution Imaging Spectrometer), both operating on ENVISAT (ENVIronmental SATellite). This effect causes retrievals of wrong aerosol optical thickness and disables the processing of aerosol parameters. From an inter-comparison of MERIS and SCIAMACHY TOA reflectance, for collocated scenes correction factors are derived to improve the insufficient SCIAMACHY L1 data calibration for data obtained with the processor 5 for the purpose of aerosol remote sensing. The corrected reflectance has been used for tests of remote sensing of the aerosol optical thickness by the BAER (Bremen AErosol Retrieval) approach using SCIAMACHY data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SCIAMACHY aerosol remote sensing

Validation of SCIAMACHY top-of-atmosphere reflectance for aerosol remote sensing using MERIS L1 data W. von Hoyningen-Huene, A. A. Kokhanovsky, M. W. Wuttke, M. Buchwitz, S. Noël, K. Gerilowski, J. P. Burrows, B. Latter, R. Siddans, and B. J. Kerridge Institute of Environmental Physics/Remote Sensing, University of Bremen, Germany Space Science and Technology Department, Rutherford Appleton Lab...

متن کامل

A Surface Reflectance Model for Aerosol Remote Sensing over Land

Aerosol remote sensing over land is based on the use of pixels covered by vegetation. Because of the absorption of the photosynthesis pigments, these pixels are quite dark in the blue and in the red. This consideration led to introduce the concept of DDV pixels. Initially, 11 DDV models have been selected from the POLDER 1 imagery. ARVI, atmospherically resistant vegetation index, has been used...

متن کامل

Sciamachy Reflectance and Solar Irradiance Validation

The top-of-atmosphere spectral reflectance measured by SCIAMACHY has been validated by comparisons between calibrated SCIAMACHY V6 Level 1 data and corresponding reflectances from AATSR and MERIS. The AATSR analysis is currently restricted to part of one specifically processed orbit containing a scene over a hurricane with high and homogeneous clouds for which results for V5 data are already av...

متن کامل

Meris Land Products Validation

Over land, the aerosol remote sensing is based on the observation of Dense Dark Vegetation (DDV) and this concept is applied on MERIS with a spectral index (ARVI, Atmospherically Resistant Vegetation Index) to detect the DDV and the use of the bands at 412, 443 and 670 nm to characterize the aerosols. The aerosol size distribution is assumed to follow the Junge law while the aerosol refractive ...

متن کامل

Aerosol remote sensing over land: A comparison of satellite retrievals using different algorithms and instruments

An inter-comparison study of the aerosol optical thickness (AOT) at 0.55 μm retrieved using different satellite instruments and algorithms based on the analysis of backscattered solar light is presented for a single scene over central Europe on October 13th, 2005. For the first time comparisons have been performed for as many as six instruments on multiple satellite platforms. Ten different alg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006